

PROBLEM-INDEPENDENT ENHANCEMENT **OF PML ABC** FOR TIME DOMAIN TECHNIQUES IN ELECTRODYNAMICS

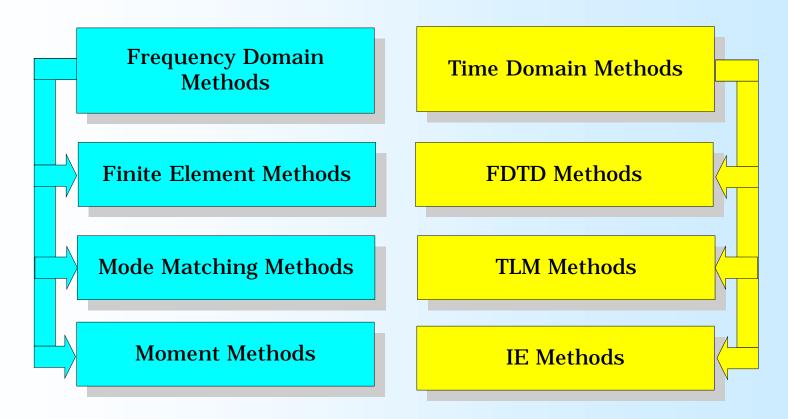
Yotka Rickard, Natalia Georgieva

April 19 2002

Outline

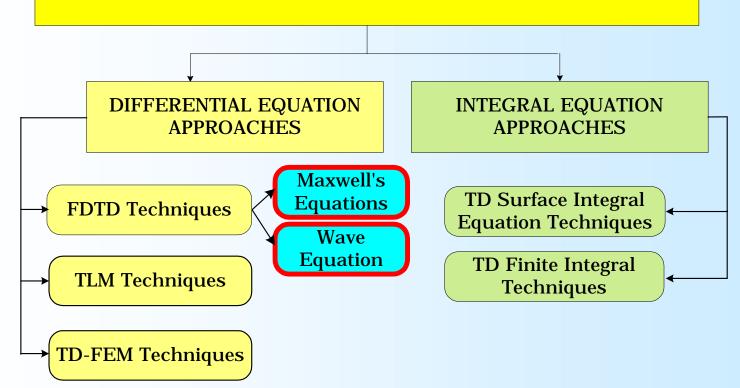
- Motivation and Objectives
- Background, Challenges and Solutions
- Implementation and Validation
- Conclusion

Classification of Well Known Numerical Techniques for Full Wave EM Field Analysis



Classification of Time-Domain Numerical Techniques for Full Wave EM Analysis

TIME-DOMAIN METHODS IN ELECTROMAGNETICS



- New wave-equation techniques in the time domain emerging:
- 1. Vector Potential Technique N. Georgieva and E. Yamashita (1998), *IEEE Trans. MTT*, vol. 46, No. 4, pp. 404-410.
- 2. Wave Potential Technique

 N. Georgieva and Y. Rickard (2000), IEEE MTT-S Int. Symposium Digest, vol. 2, pp. 1129-1132.
- Reliable, low-reflection ABCs necessary for both:
- 1. Open Problems
- 2. Guided-Wave Problems
- Practical applications of the ABCs in:
- 1. Microwave Electromagnetics
- 2. Photonics
- 3. Any physical problem described by the wave equation or Maxwell's equations in the time domain and requiring reflection-free boundaries
- Objective: <u>Problem-Independent Enhancement of PML ABC</u> for Time-Domain Techniques in Electrodynamics

Time-Domain Methods Based on:

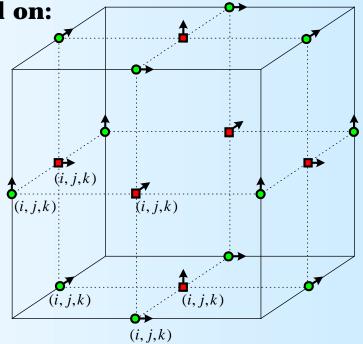
1. Maxwell's curl equations:

$$\nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t} - \sigma_m \vec{H} + \vec{J}_m^i$$

$$\nabla \times \vec{H} = \varepsilon \frac{\partial \vec{E}}{\partial t} + \sigma \vec{E} + \vec{J}^{i}$$

⇒ **FDTD** (Finite-Difference Time-Domain)

K.S. Yee (1966), *IEEE Trans. AP*, vol. 14, 1966, pp. 302-307



$$\rightarrow E_x, A_x$$

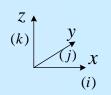
$$\mathbf{e}^{\mathbf{v}}$$
 $E_{\mathbf{v}}, A_{\mathbf{v}}$

$$\begin{array}{ccc} \bullet^{\bullet} & E_y, A_y \\ \bullet & E_z, A_z \end{array}$$

$$\longrightarrow H_x$$

$$H_y$$

$$\mathbf{1}$$
 H_z



2. The wave equation in the time domain:

$$\frac{\partial^{2} \vec{A}}{\partial t^{2}} + \left(\frac{\sigma}{\varepsilon} + \frac{\sigma_{m}}{\mu}\right) \frac{\partial \vec{A}}{\partial t} + \frac{\sigma \sigma_{m}}{\varepsilon \mu} \vec{A} - \frac{1}{\mu \varepsilon} \nabla^{2} \vec{A} - \nabla \left(\frac{1}{\mu \varepsilon}\right) \nabla \cdot \vec{A} - \Phi \nabla \left(\frac{\sigma}{\varepsilon}\right) = \frac{\vec{J}^{i}}{\varepsilon}$$

N. Georgieva and Y. Rickard (2000), IEEE MTT-S Int. Symp. Digest, vol. 2, pp. 1129-1132

- Berenger's Perfectly Matched Layer (PML) ABC for the FDTD solution to Maxwell's equations: J.P. Berenger (1994), J. of Comp. Physics, vol. 114, pp. 185-200.
- 1. Split the field components (introducing a new degree of freedom in Yee's FDTD algorithm): $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial x} = \frac{\partial$

Yee's FDTD algorithm):

$$\varepsilon_{0} \frac{\partial E_{x}}{\partial t} + \sigma E_{x} = \frac{\partial H_{z}}{\partial y}$$

$$\varepsilon_{0} \frac{\partial E_{y}}{\partial t} + \sigma E_{y} = \frac{\partial H_{z}}{\partial x}$$

$$\mu_{0} \frac{\partial H_{z}}{\partial t} + \sigma^{m} H_{z} = \frac{\partial E_{x}}{\partial y} - \frac{\partial E_{y}}{\partial x}$$

$$\Rightarrow \begin{cases}
\omega_{0} \frac{\partial E_{x}}{\partial t} + \sigma_{y} E_{x} = \frac{\partial (H_{zx} + H_{zy})}{\partial y} \\
\varepsilon_{0} \frac{\partial E_{y}}{\partial t} + \sigma_{x} E_{y} = \frac{\partial (H_{zx} + H_{zy})}{\partial x} \\
\omega_{0} \frac{\partial H_{zx}}{\partial t} + \sigma_{x}^{m} H_{zx} = -\frac{\partial E_{y}}{\partial x} \\
\omega_{0} \frac{\partial H_{zy}}{\partial t} + \sigma_{y}^{m} H_{zy} = -\frac{\partial E_{x}}{\partial y}
\end{cases}$$

- 2. Ensure reflectionless transmission by:
 - Tangential wave numbers matching and $\Rightarrow \frac{\sigma_i}{\varepsilon_0} = \frac{\sigma_i^m}{\mu_0}$; i = x, y, z Normal impedance matching.
- 3. Gradually increase the direction-dependent PML conductivity.

• From Berenger's PML ABC to Chen's MPML ABC – introduction of PML loss factor (a new degree of freedom):

B. Chen, D.G. Fang and B.H. Zhou (1995), IEEE MGWL, vol.5, No. 11, pp. 399-401.

$$\mu_{0} \kappa_{y} \frac{\partial H_{xy}}{\partial t} + \sigma_{y}^{m} H_{xy} = -\frac{\partial \left(E_{zx} + E_{zy}\right)}{\partial y}$$

$$\mu_{0} \kappa_{z} \frac{\partial H_{xz}}{\partial t} + \sigma_{z}^{m} H_{xz} = \frac{\partial \left(E_{yx} + E_{yz}\right)}{\partial z}$$

$$\varepsilon_{0} \alpha_{y} \frac{\partial E_{xy}}{\partial t} + \sigma_{y} E_{xy} = \frac{\partial \left(H_{zx} + H_{zy}\right)}{\partial y}$$

$$\varepsilon_{0} \alpha_{z} \frac{\partial E_{xz}}{\partial t} + \sigma_{z} E_{xz} = -\frac{\partial \left(H_{yx} + H_{yz}\right)}{\partial z}$$

PML loss factor

for evanescent wave attenuation

PML conductivity

for propagating wave attenuation

Challenges:

- 1. Developing a PML ABC for the wave equation:
 - for time-domain applications in 3 dimensions,
 - for general lossy inhomogeneous media.
- 2. Developing new PML variable profiles suitable for the wave equation applications.
- 3. Improving the PML absorber's performance for WETD and FDTD.

Solutions:

- 1. Use the stretched coordinate approach by mapping the WE into the frequency domain and define auxiliary variables to map it back into the time domain.
- 2. Introduce a new degree of freedom in the definition of the PML variable profiles allow growth at different exponent rates.
- 3. Introduce new types of lossy termination walls for the PML absorbers.

PML for WETD - The Stretched Coordinate Approach

1. W.C. Chew and W.H. Weedon (1994), *MOTL*, vol.7, No. 13, pp.599-604. $\nabla_{s} = \hat{x} \frac{1}{s_{x}} \frac{\partial}{\partial x} + \hat{y} \frac{1}{s_{y}} \frac{\partial}{\partial y} + \hat{z} \frac{1}{s_{z}} \frac{\partial}{\partial z}$

2. D. Zhou, W.P. Huang, C.L. Xu and D.G. Fang (2001), IEEE PTL, vol.13, No.5, pp. 454-456.

Extend D.Zhou's approach to 3 dimensions:

$$\nabla^{2}\vec{A} - \mu\varepsilon \frac{\partial^{2}\vec{A}}{\partial t^{2}} - (\sigma_{m}\varepsilon + \mu\sigma)\frac{\partial\vec{A}}{\partial t} - \sigma\sigma_{m}\vec{A} = -\mu\vec{J}$$

$$\nabla_{s}^{2} = \frac{1}{s_{x}} \frac{\partial}{\partial x} \left(\frac{1}{s_{x}} \frac{\partial}{\partial x} \right) + \frac{1}{s_{y}} \frac{\partial}{\partial y} \left(\frac{1}{s_{y}} \frac{\partial}{\partial y} \right) + \frac{1}{s_{z}} \frac{\partial}{\partial z} \left(\frac{1}{s_{z}} \frac{\partial}{\partial z} \right); \qquad \begin{cases} s_{\xi} = \alpha_{\xi} + \sigma_{\xi} / (i\omega\varepsilon) \\ \xi = x, y, z \end{cases}$$

$$s_{\xi} = \alpha_{\xi} + \sigma_{\xi} / (i\omega \varepsilon)$$

$$\xi = x, y, z$$

$$\nabla_{s}^{2}\tilde{\vec{A}} - \mu\varepsilon(i\omega)^{2}\tilde{\vec{A}} - (\mu\sigma + \varepsilon\sigma_{m})i\omega\tilde{\vec{A}} - \sigma\sigma_{m}\tilde{\vec{A}} = -\mu\tilde{\vec{J}}$$

PML for WETD - The Stretched Coordinate Approach, cont'd

Introduce auxiliary variables:

$$i\omega\tilde{\vec{X}}_{1} = \frac{1}{s_{x}}\frac{\partial\tilde{\vec{A}}}{\partial x}; \quad i\omega\tilde{\vec{X}}_{2} = \frac{1}{s_{x}}\frac{\partial\left(i\omega\tilde{\vec{X}}_{1}\right)}{\partial x}$$

$$\alpha_{x}\frac{\partial\vec{X}_{1}}{\partial t} + \frac{\sigma_{x}}{\varepsilon}\vec{X}_{1} = \frac{\partial\vec{A}}{\partial x}; \quad \alpha_{x}\frac{\partial\vec{X}_{2}}{\partial t} + \frac{\sigma_{x}}{\varepsilon}\vec{X}_{2} = \frac{\partial^{2}\vec{X}_{1}}{\partial x\partial t}$$

$$i\omega\tilde{\vec{Y}}_{1} = \frac{1}{s_{y}}\frac{\partial\tilde{\vec{A}}}{\partial y}; \quad i\omega\tilde{\vec{Y}}_{2} = \frac{1}{s_{y}}\frac{\partial\left(i\omega\tilde{\vec{Y}}_{1}\right)}{\partial y} \implies \alpha_{y}\frac{\partial\vec{Y}_{1}}{\partial t} + \frac{\sigma_{y}}{\varepsilon}\vec{Y}_{1} = \frac{\partial\vec{A}}{\partial y}; \quad \alpha_{y}\frac{\partial\vec{Y}_{2}}{\partial t} + \frac{\sigma_{y}}{\varepsilon}\vec{Y}_{2} = \frac{\partial^{2}\vec{Y}_{1}}{\partial y\partial t}$$

$$i\omega\tilde{\vec{Z}}_{1} = \frac{1}{s_{z}}\frac{\partial\tilde{\vec{A}}}{\partial z}; \quad i\omega\tilde{\vec{Z}}_{2} = \frac{1}{s_{z}}\frac{\partial\left(i\omega\tilde{\vec{Z}}_{1}\right)}{\partial z}$$

$$\alpha_{z}\frac{\partial\vec{Z}_{1}}{\partial t} + \frac{\sigma_{z}}{\varepsilon}\vec{Z}_{1} = \frac{\partial\vec{A}}{\partial z}; \quad \alpha_{z}\frac{\partial\vec{Z}_{2}}{\partial t} + \frac{\sigma_{z}}{\varepsilon}\vec{Z}_{2} = \frac{\partial^{2}\vec{Z}_{1}}{\partial z\partial t}$$

$$\mu\varepsilon\left(i\omega\right)^{2}\tilde{\vec{A}}+(\mu\sigma+\varepsilon\sigma_{m})i\omega\tilde{\vec{A}}+\sigma\sigma_{m}\tilde{\vec{A}}=i\omega\tilde{\vec{X}}_{2}+i\omega\tilde{\vec{Y}}_{2}+i\omega\tilde{\vec{Z}}_{2}+\mu\tilde{\vec{J}}$$

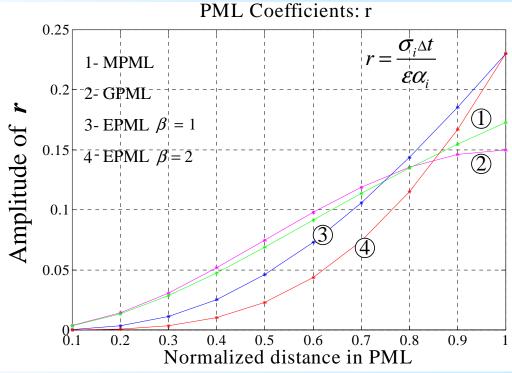
$$\Rightarrow \mu \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2} + (\varepsilon \sigma_m + \mu \sigma) \frac{\partial \vec{A}}{\partial t} + \sigma \sigma_m \vec{A} = \frac{\partial \vec{X}_2}{\partial t} + \frac{\partial \vec{Y}_2}{\partial t} + \frac{\partial \vec{Z}_2}{\partial t} + \mu \vec{J}$$

- Problem-Independent Enhancement of the PML ABC:
- **1.** Introduction of a new degree of freedom β in the definition of the PML variables:

$$\sigma_{i}(\rho) = \sigma_{\max} \left(\frac{\rho}{\delta_{i}}\right)^{n+\beta};$$
 $\beta \in (0,3]$

$$\alpha_i(\rho) = 1 + \varepsilon_{\max} \left(\frac{\rho}{\delta_i}\right)^n$$

$$r = \frac{\sigma_i \Delta t}{\mathcal{E} \alpha_i}$$



$$\rho/\delta_i$$

- Problem-Independent Enhancement of the PML ABC, cont'd:
- **2.** Introduction of new types of lossy PML termination walls:

The WETD in factored form:

$$(L^2 - \mu \varepsilon \nabla^2) \{\vec{A}\} = 0$$
 \Rightarrow 1-D version : $L^+ L^- \{\vec{A}\} = 0$

$$L^+L^-\{\vec{A}\} = 0$$

where

$$L = \frac{\partial}{\partial t} + \frac{1}{\tau}$$

$$\frac{\sigma}{\varepsilon} = \frac{\sigma_m}{\mu} = \frac{1}{\tau}$$

$$L^{\pm} = L \pm v_{\xi} \partial / \partial \xi$$

$$\downarrow \downarrow$$

$$\frac{1}{v_{\xi}} \left(\frac{\partial \vec{A}}{\partial t} + \frac{\vec{A}}{\tau} \right) + \frac{\partial \vec{A}}{\partial \xi} = 0$$

(One-way WE in lossy medium)

Types of Lossy PML Termination Walls:

A. Lossy one-way wave equation

Proposed by: C.M. Rappaport (1996), IEEE Trans. on Magnetics, vol. 32, no. 3, pp. 968-974, May 1996.

$$\frac{1}{v_{\xi}} \left(\frac{\partial \vec{A}}{\partial t} + \frac{\vec{A}}{\tau} \right) + \frac{\partial \vec{A}}{\partial \xi} = 0$$

B. Lossy version of Mur's second order ABC

$$\frac{\partial^2 \vec{A}}{\partial t^2} = -\frac{2}{\tau} \frac{\partial \vec{A}}{\partial t} - v \frac{\partial^2 \vec{A}}{\partial \xi \partial t} - \frac{v}{\tau} \frac{\partial \vec{A}}{\partial x} - \frac{1}{\tau^2} \vec{A} + \frac{v^2}{2} \left(\frac{\partial^2 \vec{A}}{\partial \eta^2} + \frac{\partial^2 \vec{A}}{\partial \zeta^2} \right)$$

C. Lossy version of Litva's second order DBC

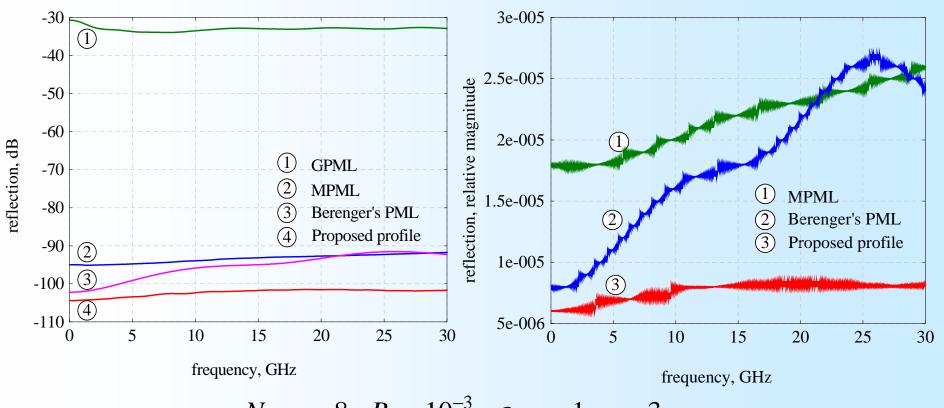
$$\frac{\partial^{2}\vec{A}}{\partial t^{2}} = -\frac{2}{\tau} \frac{\partial \vec{A}}{\partial t} - \left(v_{1\xi} + v_{2\xi}\right) \frac{\partial^{2}\vec{A}}{\partial \xi \partial t} - \frac{\left(v_{1\xi} + v_{2\xi}\right)}{\tau} \frac{\partial \vec{A}}{\partial x} - \frac{1}{\tau^{2}} \vec{A} - v_{1\xi} v_{2\xi} \frac{\partial^{2}\vec{A}}{\partial \xi^{2}}$$

Implementation and Validation

- Examples of EPML for FDTD
- 1. Dipole in open space
- 2. Hollow waveguide
- 3. Microstrip line
- 4. Optical waveguide with 2-layer AR coating
- Examples of EPML for WETD
- 1. Dipole in open space
- 2. Hollow waveguide
- 3. Partially filled with dielectric waveguide
- 4. Optical waveguide with 2-layer AR coating

Reflections:
$$R_{\text{dB}} = 20 \log_{10} \left| \frac{\mathfrak{F}\{E_z^{refl}\}}{\mathfrak{F}\{E_z^{inc}\}} \right|$$

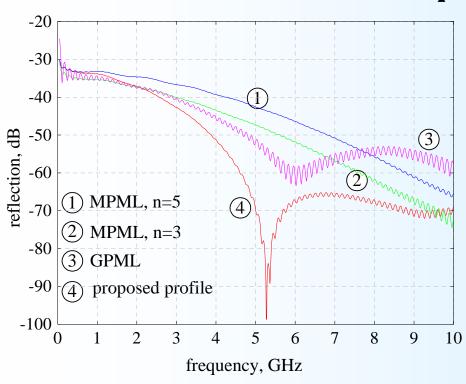
Microstrip line

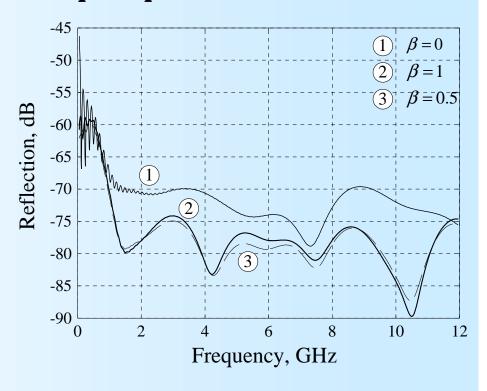


$$N_{\text{PML}} = 8$$
, $R_0 = 10^{-3}$, $\varepsilon_{\text{max}} = 1$, $n = 3$

EPML for FDTD

Infinitesimal dipole in open space





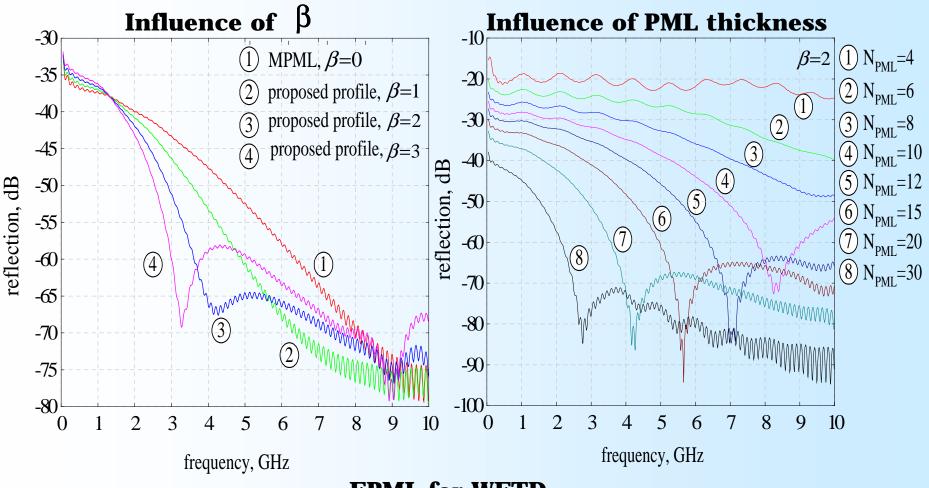
$$N_{\text{PML}} = 16$$
, $R_0 = 10^{-3}$, $\varepsilon_{\text{max}} = 3$, $n = 3$

$$N_{\text{PML}} = 10, \ R_0 = 10^{-4}, \ \varepsilon_{\text{max}} = 0, \ n = 2$$

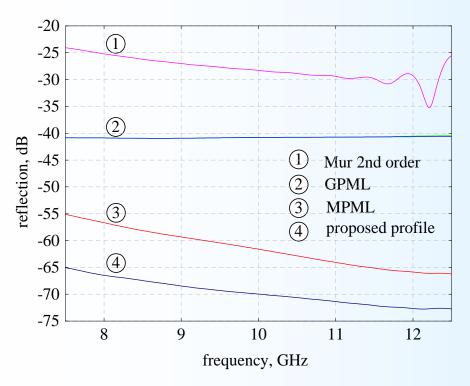
EPML for WETD

EPML for FDTD

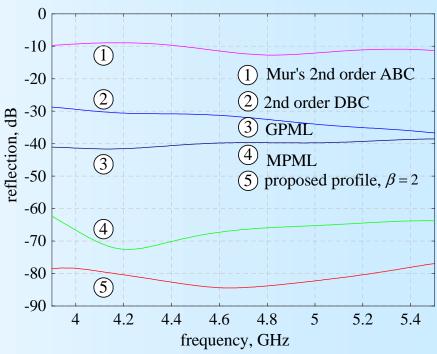
Infinitesimal dipole in open space



Hollow waveguide



Waveguide partially filled with dielectric

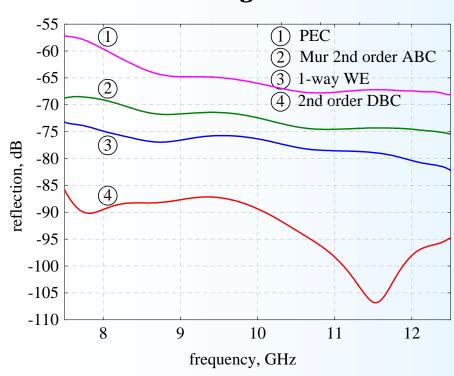


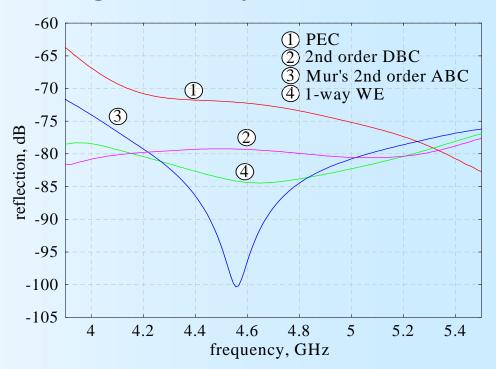
EPML for WETD

Influence of the Lossy PML Termination Wall

Hollow Waveguide

Waveguide Partially Filled with Dielectric



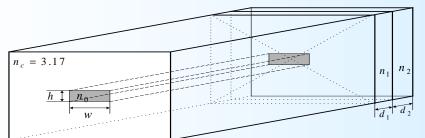


EPML for FDTD

EPML for WETD

Lossy one-way WE – proposed by C.M. Rappaport (1996), *IEEE Trans. on Magnetics*, vol. 32, no. 3, pp. 968-974, May 1996.

Optical Waveguide with a Two-Layer Antireflection Coating



$$d_1 = 0.166 \,\mu \, m$$
 $n_1 = 2.33$

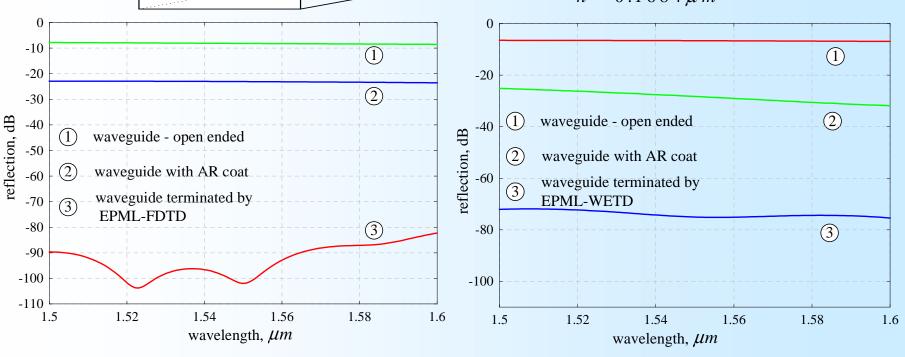
$$d_2 = 0.267 \,\mu m$$
 $n_2 = 1.45$

$$n_2 = 1.45$$

$$w = 1.6 \,\mu\,m$$

$$n_0 = 3.38$$

$$h = 0.1684 \,\mu m$$



EPML for FDTD

EPML for WETD

Conclusion

Problem-independent enhancement of PML ABC for the classical Yee's FDTD method and for the WETD method is achieved by the combination of:

- Introduction of new degree of freedom for PML variable profiles in the spatially polynomial scaling
- 2. Introduction of modified lossy PML termination walls

- Suggestions for further development:
- Optimization based on the combined influence of all EPML parameters on its performance, including the permittivity of the medium, the user-defined reflection coefficient and the 3rd order discretization error.
- 2. Generalization of the EPML ABC for anisotropic and dispersive media.
- 3. Application of the EPML ABC to non-linear media.

List of Publications Related to the Topic:

- 1. Y. Rickard, "Improved Absorbing Boundary Conditions for Time-Domain Methods in Electromagnetics", Ph.D. Thesis, McMaster University, Feb. 2002.
- 2. Y. Rickard, N. Georgieva and W.-P. Huang, "Application and optimization of PML ABC for the 3-D wave equation in the time domain", in print, *IEEE Trans. on Antennas and Propagation*, Dec 2002.
- 3. Y. Rickard, N. Georgieva and W.-P. Huang, "A perfectly matched layer for the 3-D wave equation in the time domain", in print, *IEEE Microwave and Wireless Components Letters*, May 2002.
- 4. Y. Rickard, N. Georgieva and H. Tam, "ABCs for the adjoint problems in the design sensitivity analysis with the FDTD method", submitted to *IEEE Trans. On Microwave Theory and Techniques*.
- 5. N. Georgieva and Y. Rickard, "The application of the wave potential functions to the analysis of transient electromagnetic fields", *IEEE MTT-S Int. Symposium Digest* (Boston, Massachusetts), June 2000, vol. 2, pp. 1129-1132.
- 6. N. Georgieva and Y. Rickard, "Time domain modeling of electromagnetic field propagation via wave potentials," XXVIth General Assembly of the International Union of Radio Science (URSI), August 1999, Toronto, Abstracts Digest pp. 178.